Producción energia

Producción

 

OnLine

Hay 173 invitados y ningún miembro en línea

Anuncio_ver:

Acceso usuarios

Menu Usuario

Anuncio_ver...:

Toda instalación eléctrica deberá contar obligatoriamente de dispositivos de protección eléctrica. En las instalaciones de baja tensión es el reglamento REBT el que indica las condiciones que se deben cumplir en lo relativo a protección. Dentro de los dispositivos de protección eléctrica más comunes uno de ellos es: 5 > Interruptor Diferencial Residual (DDR)

 

  
    SIMBOLOGÍA 02: Símbolos eléctricos básicos

a


Diodos LED (Resumen)

Los ledes se usan como indicadores en muchos dispositivos y en iluminación. Los primeros ledes emitían luz roja de baja intensidad, pero los dispositivos actuales emiten luz de alto brillo en el espectro infrarrojo, visible y ultravioleta. Debido a su capacidad de operación a altas frecuencias, son también útiles en tecnologías avanzadas de comunicaciones y control. Los ledes infrarrojos también se usan en unidades de control remoto de muchos productos comerciales incluyendo equipos de audio y video.


Funcionamiento

Cuando un led se encuentra en polarización directa, los electrones pueden recombinarse con los huecos en el dispositivo, liberando energía en forma de fotones. Este efecto es llamado electroluminiscencia y el color de la luz (correspondiente a la energía del fotón) se determina a partir de la banda de energía del semiconductor. Por lo general, el área de un led es muy pequeña (menor a 1 mm2), y se pueden usar componentes ópticos integrados para formar su patrón de radiación. Comienza a lucir con una tensión de unos 2 Voltios

----------------------------------------------------------------

----------------------------------------------------------------

Ledes rojos, verdes y amarillos

En los años sesenta el led se comenzó a producir industrialmente. Solo se podían construir de color rojo, verde y amarillo, con poca intensidad de luz y se limitaba su utilización a mandos a distancia (controles remotos) y electrodomésticos, como indicadores para señalar el encendido y apagado.

Ledes ultravioletas y azules

A finales de los años noventa se inventaron los ledes ultravioletas y azules.

Ledes blancos

Gracias a la invención de los ledes azules se dio el paso al desarrollo del led blanco, que es un led de luz azul con recubrimiento de fósforo que produce una luz amarilla. La mezcla del azul y el amarillo (colores complementarios en el espectro RGB) produce una luz blanquecina denominada «luz de luna» que consigue alta luminosidad (7 lúmenes unidad), con lo cual se ha logrado ampliar su utilización en otros sistemas de iluminación.

Las temperaturas de color más destacadas que encontramos en los LED son:

  • Blanco frío: es un tono de luz fuerte que tira a azulado. Aporta una luz parecida a la de los fluorescentes.
  • Blanco cálido: el tono de luz tira hacia amarillo como los halógenos.
  • Blanco neutro o natural: aporta una luz totalmente blanca, como la luz de día.
  • RGB: el LED está permitiendo en muchos productos conseguir diferentes colores. Quedan muy luminosos ya que es el propio LED el que cambia de color, no se usan filtros.

----------------------------------------------------------------

----------------------------------------------------------------

Tecnología de fabricación

En corriente continua (CC), todos los diodos emiten cierta cantidad de radiación cuando los pares electrón-hueco se recombinan; es decir, cuando los electronescaen desde la banda de conducción (de mayor energía) a la banda de valencia (de menor energía) emitiendo fotones en el proceso. Indudablemente, por ende, su color dependerá de la altura de la banda prohibida (diferencias de energía entre las bandas de conducción y valencia), es decir, de los materiales empleados. Los diodos convencionales, de siliciogermanio, emiten radiación infrarroja muy alejada del espectro visible. Sin embargo, con materiales especiales pueden conseguirse longitudes de onda visibles. Los ledes e IRED (diodos infrarrojos), además, tienen geometrías especiales para evitar que la radiación emitida sea reabsorbida por el material circundante del propio diodo, lo que sucede en los convencionales.

Diodos LED.svg
Compuestos empleados en la construcción de ledes
CompuestoColorLong. de onda
arseniuro de galio (GaAs) Infrarrojo 940 nm
arseniuro de galioaluminio (AlGaAs) rojo e infrarrojo 890 nm
arseniuro fosfuro de galio (GaAsP) rojo, anaranjado y amarillo 630 nm
fosfuro de galio (GaP) verde 555 nm
nitruro de galio (GaN) verde 525 nm
seleniuro de cinc (ZnSe) azul
nitruro de galioindio (InGaN) azul 450 nm
carburo de silicio (SiC) azul 480 nm
diamante (C) ultravioleta
silicio (Si) en desarrollo


----------------------------------------------------------------

----------------------------------------------------------------

Los ledes comerciales típicos están diseñados para potencias del orden de los 30 a 60 mW.
Nichia Corporation ha desarrollado ledes de luz blancacon una eficiencia luminosa de 150 lm/W utilizando para ello una corriente de polarización directa de 20 miliamperios (mA).
Esta eficiencia, comparada con otras fuentes de luz solamente en términos de rendimiento, es aproximadamente 1,7 veces superior a la de la lámpara fluorescente con prestaciones de color altas (90 lm/W) y aproximadamente 11,5 veces la de una lámpara incandescente (13 lm/W). Su eficiencia es incluso más alta que la de la lámpara de vapor de sodio de alta presión (132 lm/W), que está considerada como una de las fuentes de luz más eficientes.

El voltaje de operación va desde 1,8 hasta 3,8 voltios aproximadamente (lo que está relacionado con el material de fabricación y el color de la luz que emite) y la gama de intensidades que debe circular por él varía según su aplicación. Los valores típicos de corriente directa de polarización de un led corriente están comprendidos entre los 10 y los 40 mA


----------------------------------------------------------------

----------------------------------------------------------------

LED, 5mm, green (int).svg
A: ánodo
B: cátodo
1: lente/encapsulado epóxico (cápsula plástica).
2: contacto metálico (hilo conductor).
3: cavidad reflectora (copa reflectora).
4: terminación del semiconductor
5: yunque
6: poste
7: marco conductor
8: borde plano

La diferencia de potencial varía de acuerdo a las especificaciones relacionadas con el color y la potencia soportada.

En términos generales, pueden considerarse de forma aproximada los siguientes valores de diferencia de potencial:12

  • Rojo = 1,8 a 2,2 voltios.
  • Anaranjado = 2,1 a 2,2 voltios.
  • Amarillo = 2,1 a 2,4 voltios.
  • Verde = 2 a 3,5 voltios.
  • Azul = 3,5 a 3,8 voltios.
  • Blanco = 3,6 voltios.

Luego, mediante la ley de Ohm, puede calcularse la resistencia R adecuada para la tensión de la fuente Vfuenteque utilicemos.  R = \frac {{V_{fuente}}-{(V_{d1} +V_{d2}+....)}}{I}

En la fórmula, el término I se refiere al valor de corriente para la intensidad luminosa que necesitamos. Lo común es de 10 miliamperios para ledes de baja luminosidad y 20 mA para ledes de alta luminosidad; un valor superior puede inutilizar el led o reducir de manera considerable su tiempo de vida.

Otros ledes de una mayor capacidad de corriente, conocidos como ledes de potencia (1 W, 3 W, 5 W, etc.), pueden ser usados a 150 mA, 350 mA, 750 mA o incluso a 3000 mA dependiendo de las características optoeléctricas dadas por el fabricante.

Cabe recordar que también pueden conectarse varios en serie, sumándose las diferencias de potencial en cada uno. También se pueden hacer configuraciones en paralelo, aunque este tipo de configuraciones no son muy recomendadas para diseños de circuitos con ledes eficientes.

a


----------------------------------------------------------------

----------------------------------------------------------------


Toda instalación eléctrica deberá contar obligatoriamente de dispositivos de protección eléctrica. En las instalaciones de baja tensión es el reglamento REBT el que indica las condiciones que se deben cumplir en lo relativo a protección. Dentro de los dispositivos de protección eléctrica más comunes uno de ellos es: 6> Limitador de sobretensiones.

 

    SIMBOLOGÍA 03: Instrumentación eléctrica
  Recopilación de simbología sobre elementos de instrumentación eléctrica

Repasemos los conceptos básicos de uso de un osciloscopio, para ver señales digitales o analógicas,

En ell Anexo 1 de la Guía técnica de aplicación del REBT se explican los códigos IP e IK. Aquí dejamos un resumen aplicado a aparatos de iluminación.

  Breve resumen del uso de un polímetro o multímetro digital

  Lámparas led, de ahorro e incandescentes. Comparación.

   Según la ITC-BT-05 del REBT, en la verificación de las instalaciones eléctricas se deberán realizar ciertos ensayos. El 10º ensayo es: Medida de secuencia de fases

Portalámparas y casquillos empleados en bombillas. Son muy diversos los casquillos utilizados en las bombillas. Los más usuales y comunes en España son los casquillos de rosca en sus diversas medidas. En Europa se utilizan fundamentalmente 4 tamaños: E10, E14, E27, E40.

 Es frecuente identificar las resistencias por su código de colores, si no tenemos a mano un polímetro. Pero estos códigos de colores difieren en función del número de bandas de colores que tenga una resistencia. Os dejamos aquí las tablas de resistencias para 3, 4 y 5 bandas de colores con un ejemplo de uso.

 

 

 

 

  
    SIMBOLOGÍA 01: Símbolos de Transductores, Sensores, Detectores...

  Artículo sobre la duración de las lámparas led y como alargar su vida útil. Causas que
reducen su duración y consejos para evitarlo.

¿ Estás usando una placa arduino UNO que no es original, una compatible, pero tu PC no reconoce la placa o no la detecta en el puerto COM ?
Aquí os cuento la solución, encontrada en otro post.

 

 

 

FV02.jpg

Anuncio (art):

 

Articulos aleatorios:

Un avance en la recuperación y reciclado de los aceites lubricantes de motor usados. Estos están considerados como uno de los contaminantes líquidos más importantes en la Unión Europea. Poco más del 60% se puede reciclar, el resto es incinerado con el objetivo de aprovechar su poder energético, lo que conlleva altos riesgos de contaminación medioambiental..

COCHEe-Grafeno y su futuro en EERR y vehículos eléctricos.  
El grafeno es un material que está dando mucho que hablar por sus revolucionarias aplicaciones en campos muy diversos. El medio ambiente se podría beneficiar también de sus avances: los científicos trabajan en el desarrollo de placas solares flexibles, con mayor eficiencia y más baratas, y en el de baterías para vehículos eléctricos con una autonomía y una velocidad de carga que les podría hacer competir ya con los automóviles de combustión. Este artículo señala qué es el grafeno y cómo podría ayudar a las renovables y los coches eléctricos, además de otras posibles aplicac

...

dPara empezar a utilizar Arduino Mini, sigue las indicaciones para el Arduino convencional de tu sistema operativo (Windows, Mac OS X, Linux), con las siguientes modificaciones: 

Vamos a hablar del proyecto E-Ferry. La Unión Europea impulsa un proyecto que pretende incrementar la autonomía de los transbordadores de impulsión eléctrica gracias al uso de baterías más potentes y que aporten una mayor autonomía,  combinando esta mejora con un diseño más eficiente del casco, para reducir su consumo. 

Anuncio (art)...:

 

Anuncio (art).:

 

 

Buscar artículo

Twitter Enerxia

Anuncio_ver..:

MeteoGalicia

Anuncio_ver.: